
ÜBERHOLUNGSANLEITUNGEN

Motor

Type	124 BL.016 124 BL1.016
Zylinderzahl	4 in Reihe 4 in Reihe
Bohrung	73 80
Hub	71,5 71,5
Gesamthubraum	1197 1438
Verdichtungsverhältnis	8,8
DIN-Höchstleistung	44 46
Entsprechende Drehzahl	4600 4200
Grösstes DIN-Drehmoment mkg	
Entsprechende Drehzahl	
Anordnung im Fahrzeug	vorn, quer
Zylinderblock	aus einem Stück mit dem Kurbelgehäuse gegossen
Zylinderkopf	mit eingesetzten Ventilsitzen
Kurbelwelle	fünffach gelagert
Druckringe für die Kurbelwelle	2 im hinteren Hauptlager
Kolben	Autothermik-Ausführung
Kolbenringe	ein Verdichtungsring, zwei Ölabstreifringe
Passung des Kolbenbolzens in der Pleuelstange	mit Überdeckung
	durch Kette

Abb. 4. Vollständiges Triebwerk - Ansicht der Lichtmaschinen- und Zündverteilerseite (124 BL.016).

ZYLINDER, KOLBEN, KOLBENBOLZEN, PLEUELSTANGEN UND KOLBENRINGE

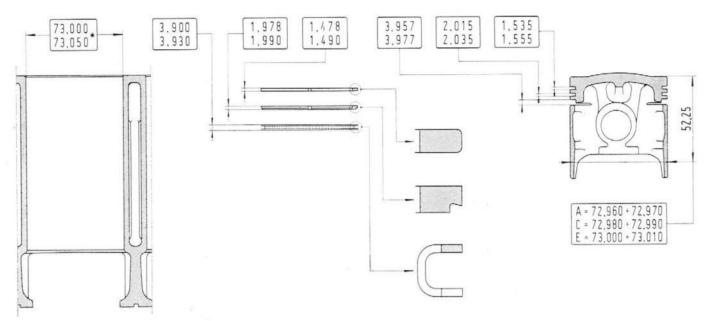


Abb. 6 - Grundmasse der Zylinderlaufbüchse, des Kolbens und seiner Ringe beim Motor 124 BL.016.

(*) Die Zylinderlaufbüchsen sind in Klassen mit einer Abstufung von je 0,01 mm eingeteilt.

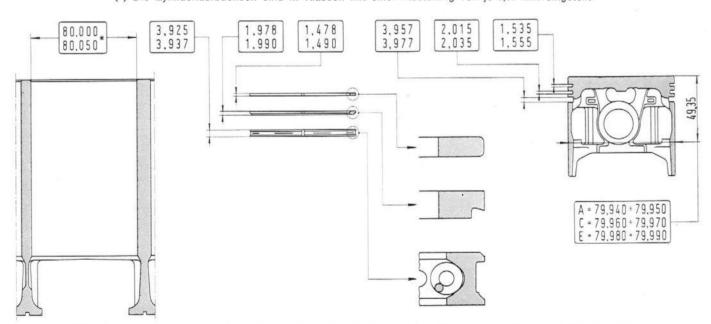


Abb. 7 - Grundmasse der Zylinderlaufbüchse, des Kolbens und seiner Ringe beim Motor 124 BL 1.016.

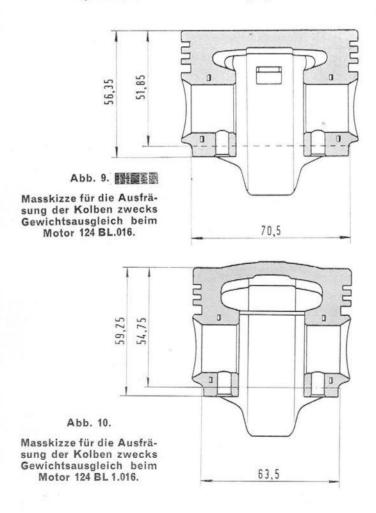
(*) Die Zylinderlaufbüchsen sind in Klassen mit einer Abstufung von je 0,01 mm eingeteilt.

Zylinderbüchsen und Kolben.

Auf der unteren Fläche des Kurbelgehäuses sind in Übereinstimmung mit den Zylinderbohrungen die Kennbuchstaben der Laufbüchsendurchmesser eingeschlagen.

Ersatzkolben sind mit drei Übermassen lieferbar, die 0,2; 0,4 bzw. 0,6 mm betragen, ohne Klasseneinteilung in bezug auf den Durchmesser der Kolbenbolzenbohrung.

Übermass-Ersatzkolbenbolzen sind mit dem einzigen Übermass von 0,2 mm ohne Klasseneinteilung lieferbar.


Beim Motor 124 BL.016 beträgt das Einbauspiel zwischen Kolben und Zylinderlaufbüchse, senkrecht zur Kolbenbolzenachse und 52,25 mm vom Kolbenboden gemessen, 0,030 - 0,050 mm.

Beim Motor 124 BL 1.016 beträgt das Einbauspiel zwischen Kolben und Zylinderlaufbüchse, senkrecht zur Kolbenbolzenachse und 49,35 vom Kolbenboden gemessen, 0,050 - 0,070 mm.

Abb. 8 - Vollständige Pleuelstange mit Kolben.

 Kennummer der Kolbenaugen für die richtige Passung mit dem zugehörigen Kolbenbolzen. - 2. Kennbuchstabe des Kolbens für die richtige Passung mit der Zylinderlaufbüchse. - 3. Nummer des Zylinders, zu dem die Pleuelstange gehört.

WICHTIG! - Nach der Anbringung der Kolbenringe am Kolben müssen die Stosstellen der Ringe um 120° gegeneinander versetzt werden.

Zwischen Kolbenbolzen und Kolbenaugen muss ein Spiel von 0,008 - 0,016 mm vorhanden sein; hierzu müssen jeweils ein Kolben und ein Kolbenbolzen verwendet werden, die zu derselben Klasse gehören (dies gilt für Ersatzteile für Normalmass).

Die Buchstaben und Nummern zur Kennzeichnung der jeweiligen Kolben- und Bolzenbohrungsklasse sind auf den unteren Kolbenbutzen eingeschlagen (Abb. 8).

Vor dem Einbau der Kolben muss man sich vergewissern, dass ihr grösster Gewichtsunterschied die zugelassene Toleranz von $\pm 2,5$ Gramm nicht übersteigt.

Sollte kein Vier-Kolben-Satz verfügbar sein, der innerhalb obiger Gewichtstoleranz liegt, dann ist der Ausgleich durch Ausfräsen von Material unten an den infragekommenden Kolben vorzunehmen, wie Abb. 9 und 10 zeigen. Die Materialabnahme darf nicht tiefer gehen als 4,5 mm in bezug auf die Normalhöhe des Kolbens, die folgende Werte hat:

- 59,25 mm beim Motor 124 BL.016 (Ausfräsung auf einen Durchmesser von 63,5 mm beschränken);
- 56,35 mm beim Motor 124 BL1.016 (Ausfräsung auf einen Durchmesser von 70,5 mm beschränken).

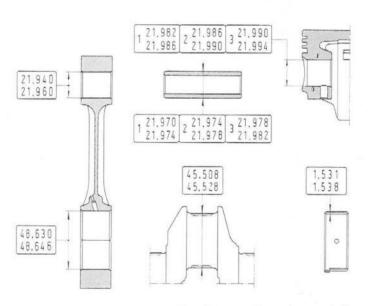


Abb. 11 - Hauptdaten der Pleuelstange, ihrer Lagerschale sowie des Pleuellagerzapfens, des Kolbenbolzens und der Kolbenaugen.

Eine Möglichkeit, die richtige Passung zwischen Kolbenbolzen und Kolbenaugen zu überprüfen, besteht darin, den vorher mit dünnflüssigem Motoröl zweckmässig geschmierten Kolbenbolzen in die Kolbenaugen mit der Hand einzuführen. Lässt sich der Bolzen einfach durch Daumendruck (Abbildung 12) hineinschieben und fällt er dann, wenn er senkrecht steht, nicht durch (Abb. 13), dann ist die Passung als korrekt anzusehen.

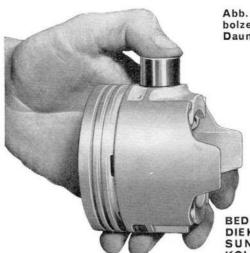


Abb. 12 - Der Kolbenbolzen lässt sich mit Daumendruck einführen.

BEDINGUNGEN FÜR DIEKORREKTEPAS-SUNG ZWISCHEN KOLBEN UND KOL-BENBOLZEN

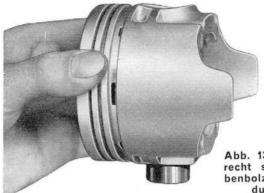


Abb. 13 - Der senkrecht stehende Kolbenbolzen darf nicht durchfallen.

ZUSAMMENBAU PLEUEL-BOLZEN-KOLBEN

Der Kolbenbolzen sitzt fest im Pleuelauge und hat in den Kolbenaugen ein Laufspiel.

Der Kolbenbolzen lässt sich nur mit besonderen Werkzeugen sachgemäss aus- und einbauen. Vor dem Zusammenbau der Pleuelstange mit dem Kolben muss dieselbe auf 240° C erwärmt werden, damit sich der Kolbenbolzen infolge der dabei entstehenden Ausdehnung des Pleuelauges einwandfrei einführen lässt.

PASSUNG ZWISCHEN KOLBENBOLZEN UND PLEUEL BZW. KOLBENAUGEN

	mm
Überdeckung zwischen Bolzen und Pleuelauge	0,010 - 0,042
Spiel zwischen Bolzen und Kolbenaugen	0,008 - 0,016

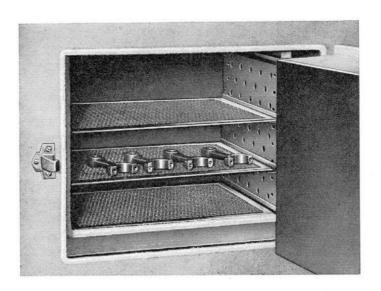


Abb. 14 - Einlegen der Pleuelstangen ohne Lagerdeckel in den Ofen.

Der Pleuelfuss muss nach innen weisen.

Herausdrücken des Kolbenbolzens.

Dieser Arbeitsgang ist auf der Presse vorzunehmen (Abb. 15), und zwar unter Verwendung der Winkelstütze A. 95605 und des Treibers A. 60308.

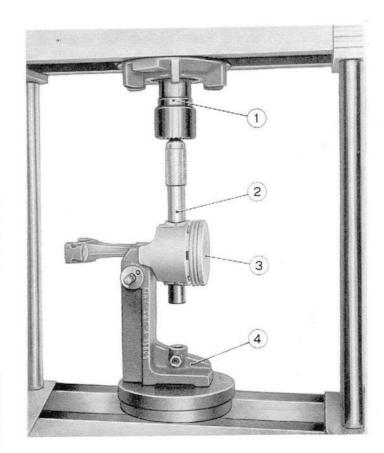


Abb. 15 - Herausdrücken des Kolbenbolzens.

 Spindel der Presse. - 2. Treiber A. 60308. - 3. Kolben mit Pleuelstange. - 4. Winkelstütze A. 95605.

Zusammenbau der Gruppe Pleuelstange-Kolben-Kolbenbolzen.

Beim Einführen des Kolbenbolzens ist wie folgt zu verfahren:

1) Kolbenbolzen auf den Treiber A. 60235 (1, Abb. 16) aufschieben, dann die Führung (2) aufsetzen und durch die Schraube (3) sichern. Diese Schraube ist nur mässig anzuziehen, sonst könnte es vorkommen, nachdem der Bolzen in Berührung mit der heissen Pleuelstange gekommen ist und sich entsprechend ausgedehnt hat, dass der Bolzen die Schraube zu stark verspannt.

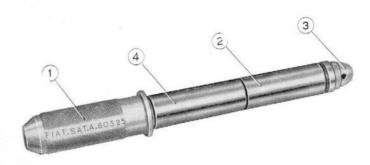


Abb. 16 - Werkzeug A. 60325 zum Einführen des Kolbenbolzens in den Kolben und in das Pleuelauge.

1. Treiber. - 2. Führung. - 3. Spannschraube. - 4. Kolbenbolzen.

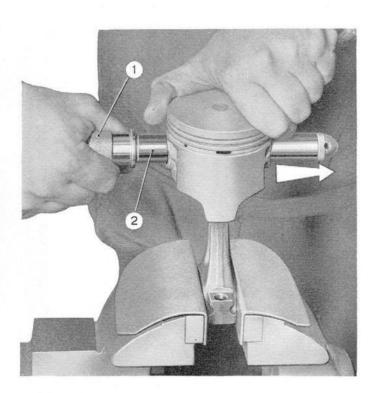


Abb. 17 - Einführen des Kolbenbolzens in den Kolben und in das Pleuelauge.

Werkzeug A. 60325. - 2. Kolbenbolzen.
 Der Kolben muss in Pfeilrichtung dicht gegen den Pleuelfuss gehalten werden.

WICHTIG! - Die Kolbenbolzenbohrung im Kolben ist um 2 mm achsversetzt. So muss der Kolben so an der Pleuelstange angebaut werden, dass die Schmierbohrung in der Pleuelstange sich an der entgegengesetzten Seite der Achsversetzung der Kolbenbolzenbohrung befindet (Abb. 19).

2) Gleich nach dem Herausnehmen der Pleuelstange aus dem Ofen muss sie schnellstens in einen Schraubstock eingespannt werden. Anschliessend wird der Kolben unter Beachtung der in obiger Anmerkung gegebenen Anweisung aufgesetzt, derart, dass sich die Kolbenaugen und das Pleuelauge decken. Dann wird der auf dem Werkzeug A. 60325 eingespannte Kolbenbolzen eingeführt (Abb. 16), bis der Absatz am Werkzeug gegen das Kolbenauge zur Anlage kommt (Abb. 18).

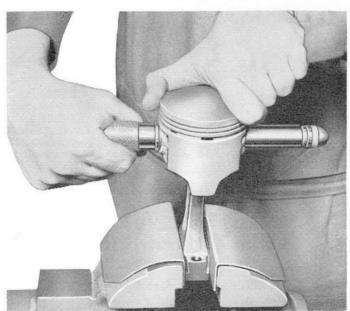


Abb. 18 - Zum vollständigen Einführen des Kolbenbolzens muss die Planschulter des Werkzeugs A. 60325 dicht gegen das Kolbenauge gedrückt werden.

Hierbei muss der Kolben in waagerechter Richtung dicht gegen das Pleuelauge gehalten werden, damit das Kolbenauge mit dem Pleuelauge in Berührung steht (Abb. 17). Nur so wird der Kolbenbolzen die richtige Einbaulage einnehmen.

WICHTIG! - Die vom Ofen herausgenommenen Pleuelstangen kühlen sich rasch ab. Das Einführen des Kolbenbolzens muss daher, zur Sicherung einer einwandfreien Verbindung, schnellstens durchgeführt werden. Bei abgekühlter Pleuelstange lässt sich die einmal vom Kolbenbolzen eingenommene Stellung nicht mehr ändern.

Überprüfung des Pressitzes des Kolbenbolzens.

Nach dem Zusammenbau der Pleuelstange mit dem Kolben ist mit Hilfe eines Drehmomentschlüssels und des Werkzeugs A. 95605 (Abb. 20) zu prüfen, ob der Kolbenbolzen richtig im Pleuelauge festsitzt. Dabei ist wie folgt zu verfahren:

1) Stütze (6, Abb. 20) in einen Schraubstock einspannen und die Pleuelstange komplett mit Kolbenbolzen und Kolben darauf befestigen.

2) Messuhrhalter nach unten schwenken, Gewindespindel (7) soweit durch den Kolbenbolzen hineinschieben, bis sie durch die Stützenbohrung durchgeht und das Kopfstück (8) gegen den Kolbenbolzen zur Anlage kommt.

Spannmutter (5) auf das Spindelgewinde aufschrauben, bis sie an der Stütze anliegt und jedes Spiel beseitigt ist.

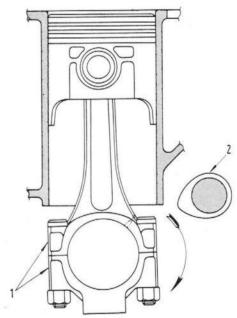


Abb. 19 - Anbau der Pleuelstange am Kolben und Anordnung im Zylinder.

1. Stelle, wo die Zylindernummer eingeschlagen ist. - 2. Nockenwelle. Der Pfeil zeigt die Drehrichtung des von vorn angesehenen Motors.

3) Messuhr durch Hochziehen des Halters (2, Abb. 20) in waagerechte Stellung bringen und durch die Klemmschraube (3) sichern. Hierauf wird der Taststift (9) der Messuhr (1) in Berührung mit dem Spindelkopf (8) gebracht und die Messuhr auf Null eingestellt. Dann Arretierstift (4) in die Längsnute der Spindel einsetzen, um dieselbe gegen Verdrehung zu sichern.

4) Einen Drehmomentschlüssel (1, Abb. 21) auf die Mutter (2) der Spindel aufstecken und Mutter dann mit einem Drehmoment von 1,3 mkg entsprechend einer Axialbelastung von 400 kg anziehen.

Die Verbindung des Kolbenbolzens mit der Pleuelstange ist dann regelrecht anzusehen, wenn

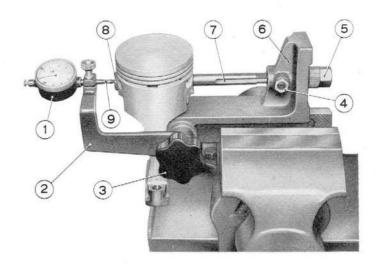


Abb. 20 - Kolben mit Pleuelstange auf dem Spannwerkzeug A. 95605 bei der Überprüfung des Pressitzes des Kolbenbolzens.

 Messuhr, auf Null eingestellt. - 2. Messuhrhalter. - 3. Knopf zum Festklemmen des Halters. - 4. Stift mit Gegenmutter zur Sicherung der Spindel. - 5. Spannmutter der Spindel. - 6. Stütze. - 7. Gewindespindel. - 8. Kopfstück der Gewindespindel, am Kolbenbolzen anliegend. - 9. Taststift der Messuhr, am Spindelkopf anliegend.

der Zeiger der Messuhr, nachdem die Spindelmutter durch den Drehmomentschlüssel in die Anfangslage zurückgedreht wurde (an der Stütze ohne Spannkraft anliegend), wieder auf Null zurückkommt.

Falls der Kolbenbolzen dagegen eine Verschiebung in bezug auf die Pleuelstange erfahren hat, muss diese durch eine neue ersetzt werden, weil die Überdeckung mit dem Kolbenbolzen unzureichend ist.

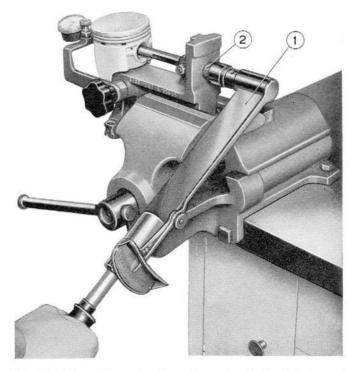
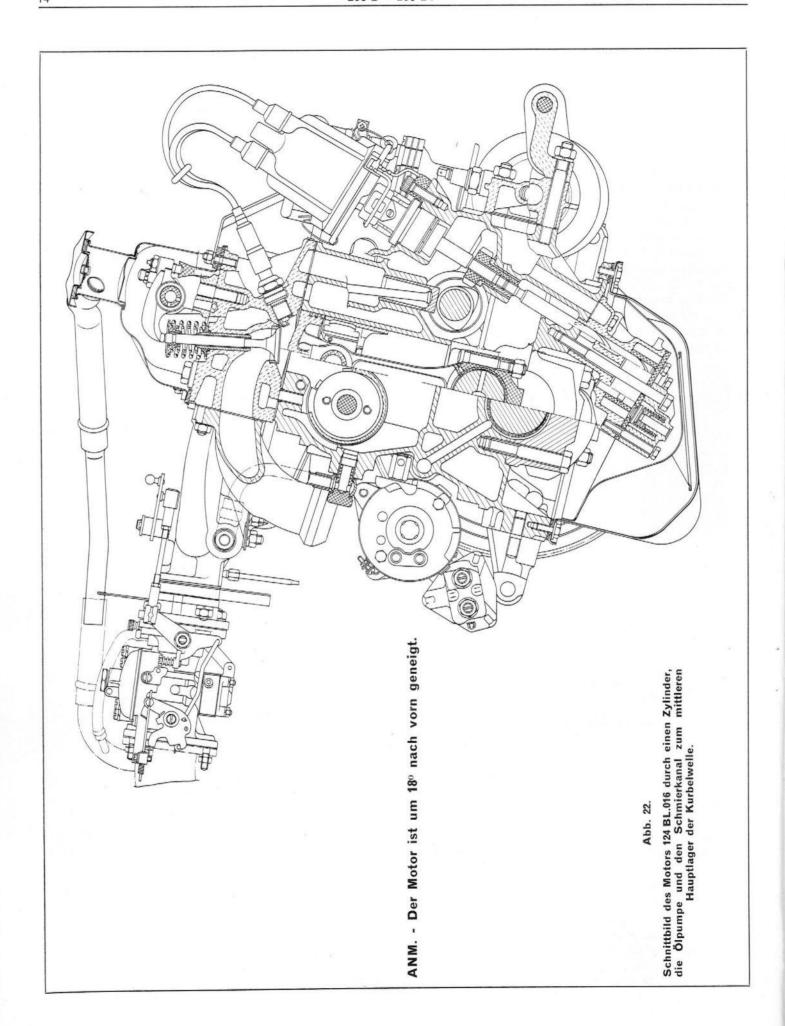



Abb. 21 - Überprüfung des Pressitzes des Kolbenbolzens auf dem Werkzeug A. 95605.

1. Drehmomentschlüssel. - 2. Spannmutter an der Gewindespindel.

KURBELWELLE

Die Kurbelwelle ist mit angegossenen Gegengewichten versehen und fünffach gelagert.

Zwei geteilte Druckringe im hinteren Hauptlager nehmen die Axialdrücke der Kurbelwelle auf.

Überprüfung der Kurbelwelle.

- 1) Flucht der Hauptlagerzapfen: höchstzulässige Abweichung 0,02 mm (Gesamtablesung an der Messuhr).
- 2) Flucht jedes Paars von Pleuellagerzapfen: höchstzulässige Abweichung in bezug auf die Hauptlagerzapfen: \pm 0,25 mm.
- Unrundheit der Haupt- und Pleuellagerzapfen: höchstzulässige Grenze nach dem Schleifen: 0,005 mm.
- 4) Konizität der Haupt- und Pleuellagerzapfen: höchstzulässige Grenze nach dem Schleifen: 0,005 mm.
- 5) Rechtwinkligkeit der Wellenachse zum Schwungradflansch: beim Durchdrehen der Welle soll eine am Schwungradflansch in ca. 33 mm Abstand von der Wellenachse angelegte Messuhr keinen grösseren Schlag als 0,025 mm anzeigen.

Abb. 23 - Kurbelwelle: man sieht, an den Gegengewichten, die Bohrungen, die zum Auswuchten angefertigt wurden.

Nachschleifen der Haupt- und Pleuellagerzapfen.

Das Nachschleifen der Kurbelwelle muss mit grösster Sorgfalt durchgeführt werden, weil die ursprünglichen, in Abb. 24 näher angegebenen Übergangsradien unverändert bleiben müssen.

DURCHMESSER DER HAUPTLAGERZAPFEN

Normal- mass	Un	termass-	Stufen r	n m
	0,254	0,508	0,762	1,016
50,775 50,795	50,521 50,541	50,267 50,287	50,013 50,033	49,759 49,779

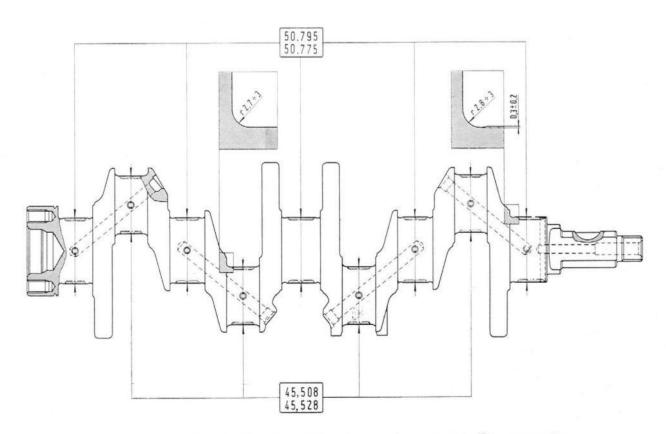


Abb. 24 - Hauptdaten der Haupt- und Pleuellagerzapfen und ihrer Übergangsradien.

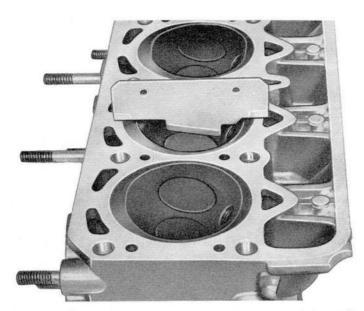


Abb. 25 - Überprüfung der Tiefe der Verbrennungsräume mit der Lehre A. 96210.

ZYLINDERKOPF

Überprüfung der Verbrennungsräume.

Diese Kontrolle ist vor jeder Überholungsarbeit vorzunehmen.

Bei in der Mitte des Verbrennungsraums aufgesetzter Lehre A. 96210 (Abb. 25) muss der Lichtspalt zwischen der Kontrollfläche an der Lehre und der Auflagefläche des Zylinderkopfs nicht grösser sein als 0,25 mm.

Sollte man nach einem eventuellen Planschleifen genannter Auflagefläche auf dem Honstein feststellen, dass der Lichtspalt mehr als 0,25 mm beträgt, dann muss der Zylinderkopf ersetzt werden.

Hydraulisches Abpressen.

Bei der Überholung des Zylinderkopfs ist zu prüfen, dass die Wasserkanäle keinen Riss haben. Hierzu wird der Zylinderkopf hydraulisch abgepresst.

Der Zylinderkopf ist mit der entsprechenden Vorrichtung zu versehen, wie Abb. 27 zeigt. Das vorher auf eine Temperatur von 85 - 90° C erwärmte Wasser wird so lange gepumpt, bis es einen Druck von 2 - 3 kp/cm² erreicht.

Bei angerissenem Zylinderkopf wird dabei Wasser aus demselben austreten und der Manometerzeiger wird gegen Null zurückgehen. In einem solchen Falle muss der Zylinderkopf ausgeschieden werden.

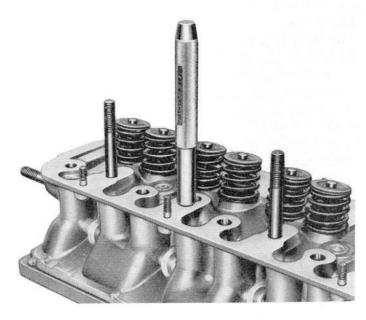
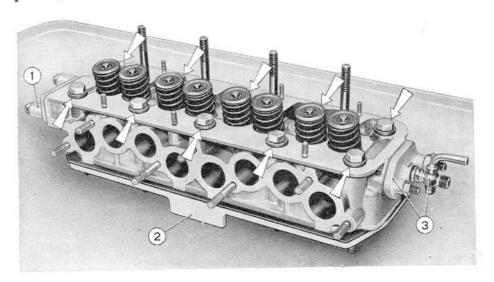



Abb. 26 - Verstemmen der Stiftschrauben für die Kipphebelböcke mit dem Werkzeug A. 69288.

Auswechseln und Nacharbeiten der Ventilführungen.

Es ist zunächst zu prüfen, dass die Ventilführungen noch fest sitzen und dass ihre Sprengringe noch in einwandfreiem Zustand sind.

Abb. 27.

Hydraulisches Abpressen des Zylinderkopfs mit der Vorrichtung A. 60324.

 Verschlussplatte für den Wasserkanal zum Kühler. - 2. Unterlage für den Zylinderkopf. - 3. Verschlussplatte für den Sitz des Wasserstutzens.

Die Pfeile zeigen die Schrauben und Muttern zur Befestigung des Zylinderkopfs an der Unterlage (2). Sollte sich zwischen Ventilschaft und Ventilführung ein übermässiges Spiel ergeben, das durch den Einbau eines neuen Ventils nicht ganz beseitigt werden kann, dann muss auch eine neue Ventilführung einbauen.

Die Ventilführungen werden in ihre Sitze mit einer Überdeckung von 0,041 - 0,086 mm eingepresst (Abb. 28).

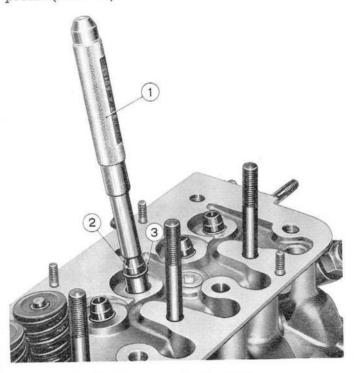


Abb. 28 - Einpressen der Ventilführungen.

1. Treiber A. 60153. - 2. Ventilführung. - 3. Sprengring.

Ventilfedern.

Es ist zu prüfen, ob die Ventilfedern angerissen und evtl. schlaffgeworden sind.

Die Federkraft wird mit dem Apparat Ap. 5049 geprüft. Die am Apparat abgelesenen Belastungs-

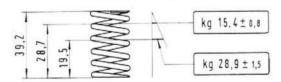


Abb. 30 - Prüfwerte der inneren Ventilfeder.

WICHTIG! - Ersatz-Ventilführungen werden mit bereits fertig bearbeitetem Innendurchmesser geliefert. Sollte sich jedoch die Notwendigkeit ergeben, diese Führungen aufzureiben, so etwa infolge etwaiger Verzüge während des Einpressens, so ist die Reibahle A. 90310 (Abb. 29) zu verwenden.

Abb. 29 - Aufreiben der Bohrung der Ventilführungen. 1. Reibahle A. 90310. - 2. Ventilführung.

und Federwerte sind mit den in untenstehender Tabelle eingetragenen Werten zu vergleichen, die sich auf neue Federn beziehen.

Abb. 31 - Prüfwerte der äusseren Ventilfeder.

FEDER	Bestell-	Federnde Win-	Gesamt- win-	Innen- durch-	Draht- durch-	A	I	3	(C	Kleinstzu- lässige Las bezogen
FEDER	Nr.	dungen	dungs- zahl	messer mm	messer	mm	mm	kg	mm	kg	auf B kg
Innere	4144466	5	6,5	17,6	2,7	39,2	28,7	15,4	19,5	28,9	13,8
Äussere	4144465	4,5	6	25,5	3,6	50	32,7	30,7	23,5	47	27,6

A = Federlänge, ungespannt.

B u. C = Prüflänge und Prüflast.

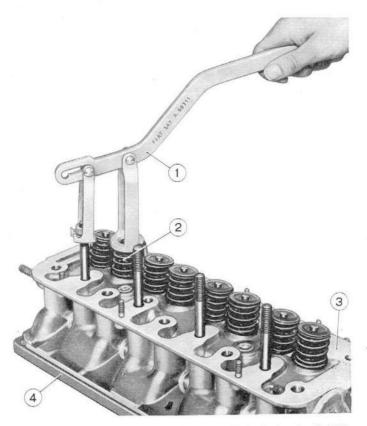


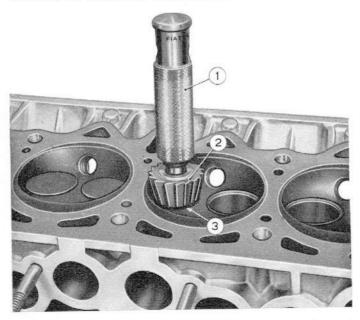
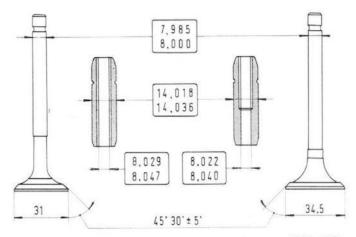
Abb. 32 - Ausbau der Ventile aus dem Zylinderkopf mit Hilfe des Ventilfederspanners A. 60311.

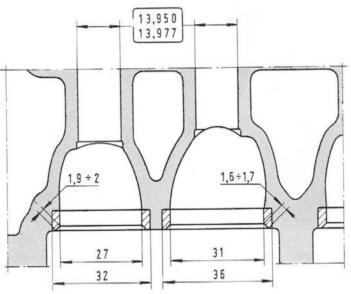
 Ventilfederspanner A. 60311. - 2. Äussere Ventilfeder. - 3. Zylinderkopf. - 4. Unterlage A. 60310 für Zylinderkopf.

Ventile und ihre Sitze.

Die Verminderung der Ventilsitzbreite erfolgt beim Ein- und Auslass mit dem 20°-Fräser A. 94031 und dem 75°-Fräser A. 94003.

Zum Nachschleifen der Ventilsitze ist die Schleifscheibe A. 94078 zu verwenden.


Abb. 33 - Verminderung der Ventilsitzbreite beim Ein- und Auslass durch den 75°-Fräser A. 94003 mit Spindel A. 94058.

1. Spindel A. 94058. - 2. 75°-Fräser. - 3. Ventilsitz.

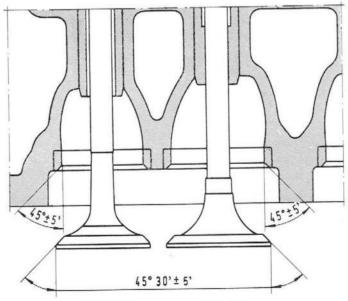

AUSLASS

Abb. 34 - Hauptdaten der Einlass- und Auslassventile sowie der Ventilführungen.

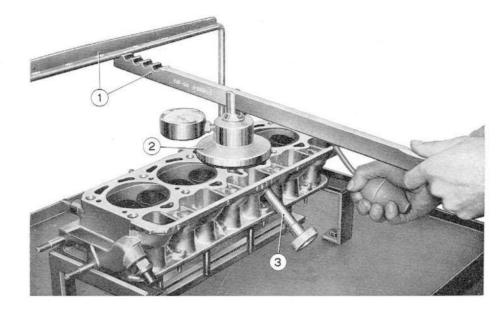
AUSLASS EINLASS

Abb. 35 - Hauptdaten der Sitze für die Ventile und Ventilführungen im Zylinderkopf.

AUSLASS EINLASS

Abb. 36 - Winkel der Ventilsitze im Zylinderkopf und der Ventiltellerkegel.

Dichtheitsprüfung der Ventile.


Die Prüfanordnung ist aus Abb. 37 ersichtlich. Wenn die Ventile nicht mehr gut schliessen, wird das Entweichen der Luft durch das mehr oder weniger schnelle Absinken des Manometerzeigers gegen Null angezeigt.

Bei mangelhaftem Dichthalten werden die Ventile und ihre Sitze im Zylinderkopf erneut und mit grösster Sorgfalt nachgeschliffen.

Abb. 37.

Dichtheitsprüfung der Ventile mit der Prüfvorrichtung A. 60148.

 Werkzeug A. 60041/2. - 2. Prüfvorrichtung A. 60148. - 3. Verschluss A. 60018 für die Zündkerzensitze.

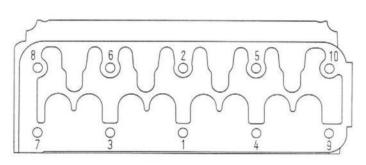


Abb. 38 - Reihenfolge beim Anziehen der Befestigungsschrauben des Zylinderkopfs.

Das Anziehen ist mit Drehmomentschlüssel und in zwei Stufen vorzunehmen. Letztes Anzugsdrehmoment 7,5 mkg.

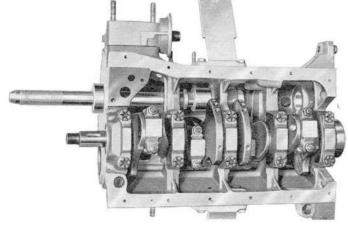
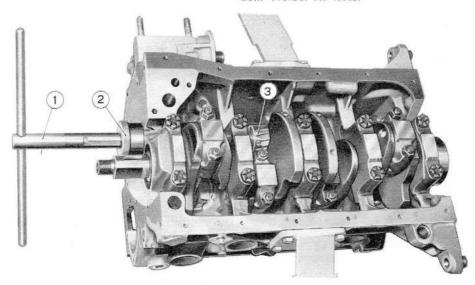



Abb. 39 - Einbau der Lagerbüchsen für die Nockenwelle mit dem Treiber A. 40025.

Abb. 40.

Ausfräsen der mittleren Lagerbüchse der Nockenwelle.

1. Frässpindel A. 90348. - 2. Vordere Führungsbüchse für Frässpindel. - 3. Fräser.

Einstellung der Steuerung.

Einlass:

-	öffnet vor	o.T.		•		٠	÷	•	110
_	schliesst n	ach u.	Т.						430

Auslass:

_	öffnet	vor	u.T		(*)					430
_	schlie	sst n	ach	o.T.						110

Spiel zwischen Ventilen und Kipphebeln für die Kontrolle der Steuerzeiten . . 0,45

Ventilhub ohne Ventilspiel Einlass . . 8,145 mm
Auslass . 8,145 mm

Betriebsspiel zwischen Ventilen und Kipphebeln bei kaltem Motor, Ein- und

Auslass 0,15 mm

Die Steuerung ist richtig eingestellt, wenn die Bezugszeichen der Steuerräder übereinstimmen (Abb. 43). Nach obiger Einstellung ist noch zu prüfen, ob die Steuerzeiten dem Diagramm in Abb. 41 entsprechen; hierzu ist ein Gradmesser zu verwenden.

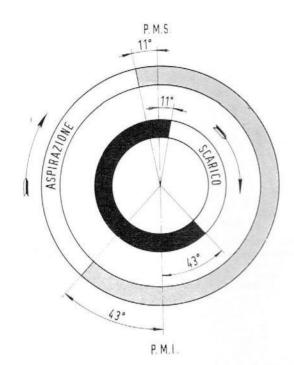


Abb. 41 - Diagramm der Steuerung, bezogen auf ein Kontrollspiel zwischen Ventilen und Kipphebeln von 0,45 mm.

P.M.S. = o. T. P.M.I. = u. T. Aspirazione = Einlass. Scarico = Auslass.

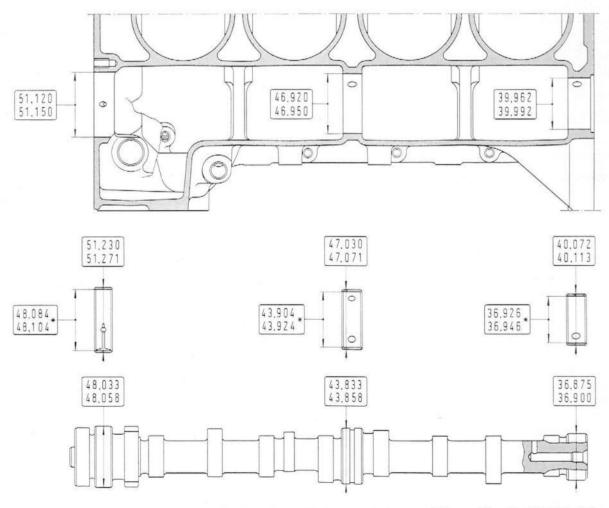


Abb. 42 - Grundmasse der Nockenwelle, ihrer Lagerbüchsen und der zugehörigen Sitze im Kurbelgehäuse.

(*) Diese Daten gelten für eingepresste und dann fertig bearbeitete Büchsen.

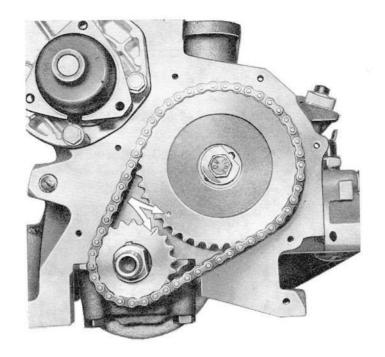


Abb. 43 - Bezugszeichen an Kurbel- und Nockenwellenrad für die Steuerungseinstellung.

Die Spannhebel der Kette müssen stets nach innen gerichtet sein, wie aus der Abbildung ersichtlich.

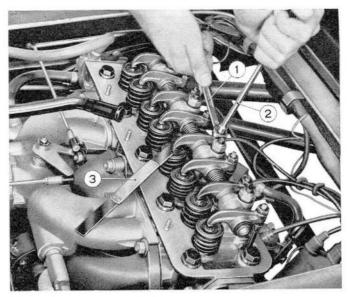


Abb. 44 - Einstellung des Ventilspiels.

 Ringschlüssel. - 2. Schlüssel A. 50107 für die Einstellschraube im Kipphebel. - 3. Stahlblechlehre.

DATEN - EINBAUSPIELE ANZUGSMOMENTE

ZYLINDER-KURBELGEHÄUSE

BEZEICHNUNG	Motor 124 BL.016	Motor 124 BL1.016
	mm	mm
Durchmesser der Zylinderlaufbüchsen (*)	73,000 - 73,050	80,000 - 80,050
Durchmesser der Sitze für normale Ventilstössel	22,003	- 22,021
Durchmesser der Sitze für die Nockenwellen-Lagerbüchsen: — vorderes Lager	51,120	- 51,150
— mittleres Lager	46,920	- 46,950
- hinteres Lager	39,962	- 39,992
Durchmesser der Sitze für die Hauptlagerschalen der Kurbelwelle	54,507	- 54,520
Breite des hinteren Hauptlagers zwischen den Sitzen der geteilten Druckringe	22,140	- 22,200

^(*) Die Zylinderlaufbüchsen sind in Masstufen von 0,01 mm eingeteilt.

PLEUELSTANGEN - PLEUELLAGERSCHALEN

BEZEICHNUNG	mm
Durchmesser der Sitze für die Pleuellagerschalen	48,630 - 48,646
Durchmesser des Pleuelauges	21,940 - 21,960
Wandstärke normaler Pleuellagerschalen	1,531 - 1,538
Untermass-Stufen der Ersatz-Pleuellagerschalen	0,254; 0,508; 0,762; 1,016
Passung des Kolbenbolzens mit dem Pleuelauge (Überdeckung)	0,010 - 0,042
Passung der Pleuellagerschalen mit den Pleuellagerzapfen: — Einbauspiel	0,026 - 0,076
Höchstzulässige Abweichung von der Parallelität der Achsen durch Pleuelkopf und Pleuelfuss: — in 125 mm Abstand vom Pleuelschaft gemessen	± 0,10

VENTILSTÖSSEL - KIPPHEBEL - KIPPHEBELACHSEN - KIPPHEBELBÖCKE

BEZEICHNUNG	mm
Durchmesser normaler Stösselsitze im Kurbelgehäuse	22,003 - 22,021
Aussendurchmesser normaler Ventilstössel	21,978 - 21,996
Übermass-Stufen der Ersatzstössel	0,05; 0,10
Passung zwischen den Stösseln und ihren Sitzen: — Einbauspiel	0,007 - 0,043
Durchmesser der Bohrung der Kipphebelböcke	17,974 - 17,992
Durchmesser der Kipphebelachse	17,956 - 17,974
Passung zwischen Kipphebelböcken und Kipphebelachse: — Einbauspiel	0,000 - 0,036
Durchmesser der Kipphebelbohrung	18,016 - 18,043
Passung zwischen den Kipphebeln und ihrer Achse: — Einbauspiel	0,042 - 0,087
Kipphebelfeder: — Innendurchmesser	18,5±0,2 46,6 21,5

KOLBEN - KOLBENBOLZEN - KOLBENRINGE

BEZEICHNUNG	Motor 124 BL.016	Motor 124 BL1.016
	mm	mm
Durchmesser normaler Kolben, senkrecht zur Kolbenbolzenachse gemessen: - in 52,25 mm Abstand vom Kolbenboden gemessen (vgl. Abb. 6) Klasse E Klasse E - in 49,35 mm Abstand vom Kolbenboden gemessen (vgl. Abb. 7) Klasse E Klasse E Klasse E Klasse E	72,960 - 72,970 72,980 - 72,990 73,000 - 73,010	79,940 - 79,950 79,960 - 79,970 79,980 - 79,990
Übermass-Stufen der Ersatzkolben	0,2, 0	,4, 0,6
Durchmesser der Kolbenbolzenbohrung Klasse 1 Klasse 2 Klasse 3	21,986	- 21,986 - 21,990 - 21,994
Höhe der Kolbenringnuten im Kolben 2. Nut 3. Nut	2,015	- 1,555 - 2,035 - 3,977
Durchmesser des normalen Kolbenbolzens Klasse 1 Klasse 2 Klasse 3	21,974	- 21,974 - 21,978 - 21,982
Übermass der Ersatz-Kolbenbolzen	C	,2
Stärke der Kolbenringe: - Verdichtungsring in 1. Nut	1,978 3,900	- 1,490 - 1,990 - 3,930 - 3,937
Passung zwischen Kolben und Zylinderbüchse, senkrecht zur Kolbenbolzenachse gemessen: — in 52,25 mm Abstand vom Kolbenboden, Einbauspiel — in 49,35 mm Abstand vom Kolbenboden, Einbauspiel	0,030 - 0,050	0,050 - 0,070
Passung zwischen Kolbenbolzen und Kolbenaugen: - Einbauspiel	0,008	- 0,016
Höhenspiel der Kolbenringe in ihren Nuten: - 1. Verdichtungsring: Einbauspiel	0,025 0,027	- 0,077 - 0,057 - 0,077 - 0,052
Stosspiel der in den Zylinder eingesetzten Kolbenringe: - 1. Verdichtungsring	0,20 keir	- 0,35 - 0,35 Spiel - 0,35
Übermass-Stufen der Ersatz-Kolbenringe: — Verdichtungsring und Ölabstreifring		0,4, 0,6 0,4

KURBELWELLE UND HAUPTLAGERSCHALEN

BEZEICHNUNG	mm
Durchmesser der normalen Hauptlagerzapfen	50,775 - 50,795
Durchmesser der Sitze für Hauptlagerschalen	54,507 - 54,520
Wandstärke normaler Hauptlagerschalen	1,825 - 1,831
Untermass-Stufen der Ersatz-Hauptlagerschalen	0,254; 0,508; 0,762; 1,016
Durchmesser der normalen Pleuellagerzapfen	45,508 - 45,528
Passung zwischen Hauptlagerzapfen und Lagerschalen: — Einbauspiel	0,050 - 0,095
Länge des hinteren Hauptlagerzapfens zwischen den Anlaufflächen	26,975 - 27,025
Breite des hinteren Hauptlagers zwischen den Druckringsitzen .	22,140 - 22,200
Stärke der Druckringe für das hintere Hauptlager	2,310 - 2,360
Stärke der Übermass-Druckringe	2,437 - 2,487
Spiel zwischen den Auflaufflächen der Kurbelwelle und dem mit Druckringen versehenen hinteren Hauptlager: — Einbauspiel	0,055 - 0,265
Höchstzulässiger Fluchtungsfehler der Hauptlagerzapfen	0,02 (*)
Höchstzulässige Abweichung der Pleuellagerzapfen von der Fluchtung mit den Hauptlagerzapfen	± 0,25
Höchstzulässige Unrundheit der Haupt- und Pleuellagerzapfen nach dem Abschleifen	0,005
Höchstzulässige Konizität der Haupt- und Pleuellagerzapfen nach dem Abschleifen	0,005
Rechtwinkligkeit der Stirnfläche des Mitnehmerflansches für das Schwungrad in bezug auf die Kurbelwellen-Drehachse:	
 höchstzulässiger Schlag bei in ca. 33 mm Abstand von der Kurbelwellenachse angelegter Tastspitze der Messuhr mit 1/100-Teilung	0,025
Schwungrad:	
höchstzulässige Abweichung von der Parallelität der Auflagefläche für die Mitnehmerscheibe zum Mitnehmerflansch für das Schwungrad	0,1
höchstzulässige Abweichung genannter Flächen von der Rechtwinkligkeit zur Wellendrehachse	0,1

^(*) Gesamtablesung an der Messuhr.

ZYLINDERKOPF - VENTILE - VENTILFÜHRUNGEN

BEZEICHNUNG	mm
Durchmesser der Ventilführungssitze im Zylinderkopf	13,950 - 13,977
Aussendurchmesser der Ventilführungen	14,018 - 14,036
Innendurchmesser der eingepressten Ventilführungen Einlass Auslass	8,022 - 8,040 8,029 - 8,047
Passung zwischen Ventilführungen und ihren Sitzen im Zylinder- kopf: Überdeckung beim Einbau	0,041 - 0,086
Durchmesser der Ventilschäfte	7,985 - 8,000
Passung zwischen Ventilschaft und Ventilführung: - Einbauspiel	0,022 - 0,055 0,029 - 0,062
Neigungswinkel der Ventilsitze im Zylinderkopf	45°±5′
Neigungswinkel des Ventiltellerkegels	45° 30′ ±5′
Durchmesser des Ventiltellers Einlass	34,5 31
Höchstzulässiger Ventilschlag bei geführtem Ventilschaft und bei einer vollen Umdrehung, mit Messuhr ermittelt, deren Fühler in der Mitte der Kegelfläche angesetzt wird	0,02
Breite der Ventilsitze im Zylinderkopf Einlass	1,6 - 1,7 1,9 - 2,0
Innendurchmesser der Ventilsitze im Zylinderkopf { Einlass . Auslass .	31 27
Theoretischer Ventilhub { Einlass	8,145 8,145

VENTILFEDERN

FEDER	Bestell- Nr.	Federnde Windun- gen	Gesamt- win- dungs- zahl	Innen- durch- messer mm	Draht- durch- messer mm	A		В		C	Kleinstzu- lässige Last in bezug
						mm	mm	kg	mm	kg	auf B kg
Äussere	4144465	4,5	6	25,5	3,6	50	32,7	30,7±1,6	23,5	47 ±2,4	27,6
Innere	4144466	5	6,5	17,6	2,7	39,2	28,7	15,4±0,8	19,5	28,9±1,5	13,8

A = Federlänge, ungespannt.

B u. C = Prüflänge und Prüflast.

NOCKENWELLE - LAGERBÜCHSEN

BEZEICHNUNG	mm	
Durchmesser der Sitze im Kurbelgehäuse für die Nockenwellen-		
Lagerbüchsen:		
- vorderes Lager	51,120 - 51,150	
- mittleres Lager	46,920 - 46,950	
- hinteres Lager	39,962 - 39,992	
Innendurchmesser der fertig bearbeiteten Büchsen in ihren Sitzen:		
- vorderes Lager	48,084 - 48,104	
- mittleres Lager	43,904 - 43,924	
- hinteres Lager	36,926 - 36,946	
Passung der Büchsen mit ihren Sitzen	immer Presspassung	
Durchmesser der Nockenwellen-Lagerzapfen:		
- vorderes Lager	48,033 - 48,058	
- mittleres Lager	43,833 - 43,858	
- hinteres Lager	36,875 - 36,900	
Passung zwischen Lagerbüchsen und Lagerzapfen der Nockenwelle:		
vorderes Lager	0,026 - 0,071	
- Einbauspiel mittleres Lager	0,046 - 0,091	
hinteres Lager	0,026 - 0,071	

ANZUGSDREHMOMENTE

TEIL	Bestell- nummer	Gewinde	Werkstoff	Anzugs- moment mkg
Befestigungsschrauben für Hauptlagerdeckel	1/42343/30	M 10 x 1,25	R 100	8
Befestigungsschraube f. Zylinderkopf	1/59718/30	M 10 x 1,25	R 100	7,5
Pleuelschraube	1/25550/20	M 9 x 1	R 80 (Schraube R 100)	5
Befestigungsschraube f. Schwungrad	4160880	M 10 x 1,25	R 100	8
Mutter für Kipphebelböcke	1/35980/11	M 10 x 1,25	R 50 Znt (Stiftschr. R 80)	4
Schraube für Nockenwellenrad	1/59707/20	M 10 x 1,25	R 80	5
Mutter für Riemenscheibe an der Kurbelwelle	4129836	M 20 x 1,5	R 50 Znt	12
Befestigungsschraube f. Ölwanne	1/09022/21	M 6 x 1	R 80 Znt	0,8
Befestigungsmutter für unteres Motorlager .	1/21647/11	M 10 x 1,25	R 50 Znt (Stiftschr. R 80 Znt)	4,5